Dr. Navid Moheimani of Murdoch University's Algae R&D Centre

Dr. Navid Moheimani of Murdoch University’s Algae R&D Centre

J dropcapason Boudville reports in Science West Australia that Murdoch University researchers have dramatically increased the conversion efficiency of solar energy by the novel pairing of algae biomass and selective thin film solar panels.

By modeling different translucent solar panel wavelength absorbencies and situating algae ponds beneath the panels, researchers were able to find algae species which thrived in the resulting ‘unused’ solar spectrum.

Photosynthesis only uses part of the solar spectrum within the range of 400–700nm (mostly blue and red spectrum) and translucent solar panels can be designed to absorb the spectrum outside these parameters to produce electricity.

Algae R&D Centre and School of Veterinary and Life Science’s Dr. Navid Moheimani says while the purpose of the design is to capture the entire light spectrum, a secondary outcome was also a reduction in algae pond evaporation.

“Considering the shortage of freshwater in WA, we can only use seawater in our algae cultivation ponds for filling the pond and evaporative make up,” he says. “Being able to control this by removing infra red light would allow us to grow several other species of microalgae.”

Researchers were also able to model different solar-algae configurations, like using produced electricity to make up the essential red portion of the solar spectrum with LED lighting—this increasing the biomass potential by 16.5 per cent.

Dr. Moheimani says while it will take more research and development to find algae-appropriate wavelength absorbencies for solar panels, it could soon replace other production systems.

The project was also conducted by Murdoch’s Dr. David Parlevliet, from the School of Engineering and Information Technology, Physics and Energy.

Read More